본문 바로가기
Artificial Intelligence/NLP

자연어처리 각 분야들 (NLP tasks)

by sohyunwriter 2021. 11. 7.

Academic Disciplines related to NLP

 

1. natural language processing (major conference : ACL, EMNLP, NAACL)

1) low level parsing

-Tokenization

e.g. 나는 학교를 간다 -> 나, 는, 학교, 를, 가, ㄴ, 다

-stemming (어근 추출)

e.g. study -> studying, studied / 맑다 -> 맑은데, 맑지만, 맑고

 

2) word and phrase level

-Named entity recognition (NER)

e.g. 뉴욕타임즈

-part-of-speech(POS) tagging

e.g. 주어/본동사/목적어/부사구/형용사구 등 구분

-noun-phrase chunking

-dependency parsing

-coreference resolution

 

3) sentence level

-Sentiment analysis

e.g. 긍정/부정 구분

-machine translation

e.g. I study math. -> 나는 수학을 공부한다.

 

4) Multi-sentence and paragraph level

-entailment prediction

e.g. 어제 한 번도 결혼하지 않았다. 어제 존이 결혼했다. -> 두 문장은 모순 관계

-question answering

e.g. where did napoleon die?-> 단순 키워드가 들어간 텍스트를 검색하는게 아니라 이 질문에 대한 대답을 반환

-dialogue systems

e.g. 챗봇과 같은 대화를 수행

-summarization

e.g. 뉴스 문서 한줄 요약

 

2. Text mining (major conferences : KDD, The WebConf (formerly, WWW), WSDM, CIKM, ICWSM)

-Extract useful information and insights from text and document data

e.g. analyzing the trends of AI-related keywords from massive news data

-Document clustering (e.g. topic modeling)

e.g. clustering news data and grouping into different subjects

-Highly related to computational social science

e.g. analyzing the evolution of people's political tendency based on social media data

 

3. Information retrieval (major conferences: SIGIR, WSDM, CIKM, RecSys)

-Highly related to computational social science

-> This area is not actively studied now

-> It has evolved into a recommendation system, which is still an active area of research

 

 

 

더보기

출처 : 부스트캠프 AI Week4 Day 16, 주재걸 교수님 강의